CH); 11.29 ppm (1H, s, OH). PMR spectrum of syn-isomer XII: $3.55 (2H, d, J = 5.2 \text{ Hz}, \text{CH}_2)$, $5.81 (2H, s, \text{NH}_2)$, 7.47 (1H, t, J = 5.2 Hz, CH), 10.82 ppm (1H, s, OH).

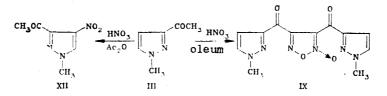
LITERATURE CITED

- 1. V. G. Andrianov, V. G. Semenikhina, and A. V. Eremeev, Khim. Geterotsikl. Soedin., No. 6, 822 (1991).
- 2. V. G. Andrianov, V. G. Semenikhina, and A. V. Eremeev, Khim. Geterotsikl. Soedin., No. 1, 122 (1991).
- 3. V. G. Andrianov, A. V. Eremeev, and Yu. B. Sheremet, Khim. Geterotsikl. Soedin., No. 6, 856 (1988).
- 4. A. Baranski, Pol. J. Chem., 56, 1585 (1982).
- 5. A. Baranski, Pol. J. Chem., 58, 425 (1984).
- 6. Ch. Grundmann and P. Grunanger, The Nitrile Oxides, Springer, Berlin (1971), p. 115.
- 7. T. Ajello, Gazz. Chim. Ital., 67, 779 (1937).
- 8. G. C. Klernspehn, J. A. Jung, and S. A. Studniarz, J. Org. Chem., 32, 460 (1967).
- 9. G. J. Karabatsos and R. A. Taller, Tetrahedron, 24, 3347 (1968).
- 10. S. Cusmano and T. Tiberio, Gazz. Chim. Ital., 81, 106 (1951).

NITRATION OF ACETYL DERIVATIVES OF 1-METHYLPYRAZOLE

Yu. A. Manaev, A. V. Khrapov, and V. P. Perevalov

UDC 547.772.1:542.958.1


The nitration of acetyl-substituted 1-methylpyrazoles with nitric acid in 20% oleum and in acetic anhydride was studied. Dipyrazoloylfuroxans are formed in the case of nitration in oleum. 4-Nitro-3-acetyl-1-methylpyrazole was obtained by nitration of 3-acetyl-1-methylpyrazole in acetic anhydride.

We have previously studied the peculiarities of the nitration of 1-methylpyrazolecarboxylic acids and their 4-halosubstituted derivatives [1, 2]. In continuing our study of the peculiarities of the nitration of carbonyl derivatives of 1-methylpyrazole we have accomplished the nitration of a number of acetyl-1-methylpyrazoles: 4-acetyl-1,3- and -1,5dimethylpyrazoles (I, II), 3-acetyl-1-methylpyrazole (III), and 5-acetyl-1-methylpyrazole (IV).

The starting acetylpyrazoles I and II were obtained by direct acetylation of the corresponding pyrazoles with acetic anhydride in the presence of sulfuric acid [3], while III and IV were synthesized by the reaction of 1-methylpyrazole-3- and -5-carboxylic acid nitriles (V, VI) with methylmagnesium iodide [4].

The nitration of acetylpyrazoles I-IV was accomplished with concentrated nitric acid in 20% oleum or in acetic anhydride. In the case of nitration of acetylpyrazoles I-IV in oleum none of the indicated compounds form products with a nitro group in the pyrazole ring; as in the nitration of acetophenone [5], the corresponding 3,4-dipyrazoloylfur-oxans VII-X are obtained. The highest yields of VII-X are obtained when the reaction is carried out in the presence of acetic acid and at no higher than 70°C. The nitration of acetylpyrazole IV at higher temperatures leads to 1-methylpyrazole-5-carboxylic acid (XI) as a consequence of oxidative processes.

As demonstrated by our studies, I, III, and IV do not undergo nitration on treatment with concentrated nitric acid in acetic anhydride at 0°C. Under similar conditions II is converted to furoxan in 40% yield. However, 3-acetyl-4nitro-1-methylpyrazole (XII) was isolated as the only product in the nitration of acetylpyrazole III in acetic anhydride under severe conditions (70°, 3 h).

An attempt to introduce a nitro group into the furoxan VIII molecule was unsuccessful. Compound VIII is not nitrated by an equimolar amount of nitric acid in 20% oleum at 70°C, while the use of a tenfold amount of nitric acid

D. I. Mendeleev Moscow Chemical-Technological Institute, Moscow 125820. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 833-835, June, 1991. Original article submitted January 29, 1990.

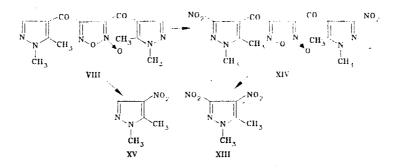

Com- pound	Empirical formula	mp.°C	PMR spectrum, δ, ppm						Yield,
			ŀ-CH₃	3-CH ₃ (5-CH ₃)	3-H (5-H)	сосн₃	4-H, đ	M۰	%
III IV	$\begin{array}{c} C_6H_8N_2O\\ C_6H_8N_2O\end{array}$	$ \begin{array}{c} 100 (9) \\ 145 \dots 150 \\ (20) \end{array} $	3,91 4,06	_	7,35 d 7,40 d	2,49 2,48	6,70 6,85	_	81 73
VII	$C_{14}H_{14}N_6O$	138 141	3,80; 3,90	2,36; 2,40	8,44; 8,62		***	3 30	80
VIII	C ₁₄ H ₁₄ N ₆ O	186 187	3,78; 3,80	2,54; 2,56	7,62;		***	3 30	84
IX	$C_{12}H_{10}N_6O$	150 152	3,67; 3,80		7,51 đ		6,72;	302	53
Х	$C_{12}H_{10}N_{6}O$.108 110	4,05; 4,10		7,58d 7,47 d		6,80 6,91;	302	55
XII	C ₆ H ₇ N ₃ O ₃	118 121	3,95		7,55 d 8,12	2,57	7,37		76

TABLE 1. Characteristics of the Synthesized Compounds

*The boiling points (°C, mm) are presented for III and IV. Compounds VII and VIII were crystallized from isopropyl alcohol—DMF (5:1), while IX, X, and XII were crystallized from ethanol.

under similar conditions leads to a mixture of 1,5-dimethyl-3,4-dinitropyrazole (XIII) and 1,5-dimethyl-4-nitropyrazole (XV) in a ratio of 5:2.

The indicated results provide evidence that the nitration of VIII proceeds both via direct ipso attack at the 4 position of the pyrazole fragment of the starting compound and through a step involving the formation of 3,4-bis(1,5-dimethyl-3-nitro-4-pyrazoloyl) furoxan (XIV), which then undergoes ipso substitution. Evidence in favor of the possibility that the reaction proceeds through a step involving the formation of nitrofuroxan XIV is provided by the presence among the reaction products of dinitropyrazole XIII, which, according to the data in [6], is not formed from 1,5-dimethyl-4-nitropyrazole under similar conditions.

EXPERIMENTAL

The PMR spectra of solutions of the compounds in $CDCl_3$ were recorded with a Tesla BS spectrometer [100 MHz, hexamethyldisiloxane (HMDS)]. The mass spectra were obtained with an MKh-1303 spectrometer at an ionization energy of 70 eV. Chromatographic monitoring was accomplished on Silufol UV-254 plates [elution with chloroform—alcohol (20:1)].

The characteristics of III, IV, VII-X, and XII are presented in Table 1. The results of elementary analysis of the newly obtained compounds were in agreement with the calculated values.

3-Acetyl-1-methylpyrazole (III). A solution of 10.7 g (0.1 mole) of 1-methylpyrazole-3-carboxylic acid nitrile (V) in 150 ml of absolute ether was added to a solution of methylmagnesium iodide obtained by the reaction of 3.58 g (0.14 mmole) of magnesium and 20.7 g (0.14 mole) of methyl iodide in 100 ml of absolute ether, after which the mixture was refluxed for 30 min. It was then cooled and treated with 50 ml of 15% ammonium chloride solution. The ether layer was separated from the aqueous layer, and the latter was extracted with ether (5 \times 50 ml). Workup gave acetylpyrazole III.

5-Acetyl-1-methylpyrazole (IV). This compound was obtained in the same way as III from 1-methylpyrazole-5carboxylic acid nitrile (VI).

3,4-Bis(1,2-dimethyl-4-pyrazoloyl) furoxan (VII). A solution of 2 g (0.015 mole) of acetylpyrazole I in 5 ml of acetic acid was added with cooling to a nitrating mixture consisting of 4 ml (0.1 mole) of nitric acid (d 1.51) and 4 ml of 20% oleum, after which the temperature was cautiously raised to 70°C, and the mixture was maintained at this temperature for 1 h and then poured over ice.

3,4-Bis(1,5-dimethyl-4-pyrazoloyl)furoxan (VIII). This compound was obtained in the same way as VII by nitration of II.

3,4-Bis(1-methyl-3-pyrazoloyl) furoxan (IX). This compound was obtained in the same way as VII by nitration of III.

3,4-Bis(1-methyl-5-pyrazoloyl)furoxan (X). A 1.24-g (0.01 mole) sample of IV was dissolved in 1 ml of 20 oleum, the solution was cooled to 0°C, and 0.5 ml (0.012 mole) of nitric acid (d 1.51) in 1 ml of 20% oleum was added with stirring. The temperature was cautiously raised to 50°C, and the mixture was maintained at this temperature for 30 min. The reaction was completed by heating at 70°C for 1 h. When the indicated conditions were not adhered to, the reaction mixture heated up spontaneously to 150°C, and 0.5 g (40%) of carboxylic acid XI was isolated as a result of the reaction.

Nitration of 4-Acetyl-1,5-dimethylpyrazole (II) in Acetic Anhydride. A 3-g (0.02 mole) sample of II was dissolved in 4 ml of acetic anhydride, a mixture of 2.5 ml (0.06 mole) of nitric acid (d 1.51) in 3 ml of acetic anhydride was added with cooling and stirring, and the mixture was maintained at 0°C for 1 h. Workup gave 3.1 g of a mixture of II and III (in a ratio of 3:2, according to the PMR spectral data).

4-Nitro-3-acetyl-1-methylpyrazole (XII). A solution of 0.83 g (0.02 mole) of nitric acid (d 1.51) in 3 ml of acetic anhydride was added with cooling to a solution of 1.24 g (0.01 mole) of III in 25 ml of acetic anhydride, after which the mixture was heated at $65-70^{\circ}$ C for 3 h and then poured over ice.

Nitration of Furoxan VIII. A. A 1.65-g (0.005 mole) sample of furoxan VIII was added to a nitrating mixture consisting of 0.4 ml (0.01 mole) of nitric acid (d 1.51) and 4 ml of 20% oleum, and the mixture was heated at 70°C for 1 h. Workup gave 1.60 g of the starting compound.

B. A 3-mmole sample of furoxan VIII was added to a nitrating mixture consisting of 4 ml (0.1 mole) of nitric acid (d 1.51) and 4 ml of 20% oleum, after which the mixture was heated at 70°C for 1 h and then poured over 50 g of ice to precipitate XIII. The yield was 0.63 g (52%). The aqueous solution remaining after separation of the precipitate was neutralized with sodium carbonate and extracted with chloroform (5 \times 20 ml). Removal of the solvent by distillation gave XV. The yield was 0.20 g (21%).

LITERATURE CITED

1. Yu. A. Manaev, M. A. Andreeva, V. P. Perevalov, and B. I. Stepanov, Zh. Obshch. Khim., 52, 2592 (1982).

- 2. V. P. Perevalov, Yu. A. Manaev, M. A. Andreeva, and B. I. Stepanov, Zh. Obshch. Khim., 55, 882 (1985).
- 3. I. I. Grandberg, S. V. Tabak, A. N. Bobrova, A. N. Kost, and L. G. Vasina, *Khim. Geterotsikl. Soedin.*, No. 3, 407 (1965).
- 4. P. L. Pickard and T. L. Tolbert, J. Org. Chem., 26, 4886 (1961).
- 5. H. R. Snyder and N. E. Boyer, J. Am. Chem. Soc., 77, 4233 (1955).
- 6. M. A. Andreeva, Yu. A. Manaev, R. Ya. Mushii, V. P. Perevalov, V. I. Seraya, and B. I. Stepanov, Zh. Obshch. Khim., 50, 2106 (1980).